Nick 'Uhtomsky (hvac) wrote,
Nick 'Uhtomsky
hvac

Category:

Комбинированное производство электричества, тепла и холода.

Blockheizkraftwerke

Мини-ТЭЦ (BHKW), как правило, работает в двух основных производственных режимах:

  • получение электричества и тепла (когенерация)
  • получение электричества, тепла и холода (тригенерация).

Холод вырабатывается абсорбционной холодильной машиной , потребляющей не электрическую, а тепловую энергию.

Абсорбционные чиллеры (с кпд 0,64-0,66) выпускаются множеством ведущих производителей и  работают на натуральных хладагентах, а в качестве топлива используются – нефть, газ или их производные, био-топливо, пар, горячая вода, солнечная энергия или избыток тепловой энергии газовых турбин – поршневых электростанций.

При всей привлекательности, использование их в РФ является пока довольно редким явлением.

Ведь до совсем недавнего времени, в РФ центральные климатические системы не считались обязательными в промышленном и гражданском строительстве

Тригенерация является выгодной, поскольку дает возможность эффективно использовать утилизированное тепло не только зимой для отопления, но и летом для поддержания комфортного микроклимата в помещениях или для технологических нужд (пивоварни, охлаждение молока, etc.).

Такой подход позволяет использовать генерирующую установку круглый год.

Силовыми установками - агрегатами этих электростанций являются газо-поршневые или газотурбинные силовые агрегаты.

Газы, используемые для работы газовых теплоэлектростанций :

Логарифмическая шкала теплотворной способности различных газов (кВтч/нм3)

Схема инверторного преобразования позволяет получить идеальные, качественные выходные параметры по току, напряжению и частоте.

газовая электростанция в GB UK, работающая на коровьем навозе. Мощность газовой ко-генераторной электростанции составляет ~2 МВт, что вполне достаточно для энергоснабжения небольшого городка.

Концепция : BHKW - Блочные мини – теплоэлектростанции, работающие на газе

Энергетический баланс

Энергетический баланс

BHKW, Мини-ТЭЦ состоит из следующих основных компонентов:

  • двигатели внутреннего сгорания – поршневые или газотурбинные
  • генераторы постоянного или переменного тока
  • котлы-утилизаторы отработавших газов
  • катализаторы
  • системы управления
  • Средства автоматики мини-тэц обеспечивают функционирование установок в рекомендованном диапазоне рабочих режимов и достижение эффективных характеристик. Мониторинг и телеметрия мини-тэц осуществляются дистанционно.

Современная универсальная модульная концепция

  • Совместная выработка тепловой и электрической энергии .
  • Компактная конструкция с расположенным на раме оборудованием: двигателем, генератором, теплообменником и электрощитом
  • Предпочтительное применение на объектах с высоким потреблением электрической и тепловой энергии
  • Поставляется  с различной электрической и тепловой мощностью . Электрическая мощность одного модуля, например, составляет, 70, 140  или 238 кВт, тепловая мощность 81, 115, 207 или 353 кВт
  • Применяется на выбор для параллельной работы с электросетью или в качестве резервного питания
  • Использование тепла, содержащегося в смазочном масле, охлаждающей жидкости и выхлопных газах двигателя
  • Несколько  генераторов могут быть объединены в единый энергетический комплекс

Работа с пониженным уровнем шума и низкими выбросами вредных веществ

  • Спокойный ход газового двигателя внутреннего сгорания, имеющего от четырех до двенадцати цилиндров, и регулируемый катализатор. Уровень шума в зависимости от мощности модуля составляет 55 - 75 дБ(A)
  • Низкие показатели выбросов окиси азота и углекислого газа

Простое и удобное управление

  • Модуль управляется простым нажатием кнопок . Система пуска с зарядным устройством и вибропрочными необслуживаемыми аккумуляторными батареями
  • Встроенная распределительная установка под облицовкой рамы с наглядным пультом управления
  • Дистанционный контроль основных функций с согласованными комплектующими

Быстрый монтаж, пуск в эксплуатацию и техническое обслуживание

  • Полностью укомплектованный, готовый к подключению узел, имеющий синхронный генератор с воздушным охлаждением, для производства трехфазного тока напряжением 400 В, частотой 50 Гц и горячей воды с температурным графиком 90/70 °C при стандартной разнице температур между подающей и обратной линиями 20 K.
  • Любой модуль блок-ТЭС может работать в зависимости от тепловой или электрической нагрузок в диапазоне электрической мощности 50%–100% (что соответствует 60–100% тепловой мощности).
  • Пробный пуск на заводе с составлением протокола и занесением рабочих характеристик
  • Беспроблемная установка виброгасящей конструкции блок-ТЭС без дополнительного анкерного крепления
  • Автономная система маслоснабжения с резервуаром для хранения масла 60 л.

ТЭС

В наши дни ни одну техническую задачу невозможно решить без хорошей системы управления. Таким образом, совершенно естественно, что блоки управления входят в каждый узел. 

Контроль осуществляют датчики давления масла, температуры охлаждающей жидкости, температуры выхлопных газов в катализаторе, температуры воды в отопительной системе и скорости вращения, а также датчики минимального давления охлаждающей жидкости, минимального уровня масла и предохранительный ограничитель температуры, с проводкой до шкафа управления

Контроль

 

Автономное энергоснабжение : микротурбины

Для микротурбинных электростанций  приемлемо топливо:

  • природный газ, высокого, среднего и низкого давления
  • попутный нефтяной газ (ПНГ)
  • биогаз
  • газ, получаемый при очистке сточных вод
  • газ, получаемый при утилизации мусора
  • пропан
  • бутан
  • дизельное топливо
  • керосин
  • шахтный газ
  • пиролизный газ

Микротурбина Capstone  200

Производятся микротурбины следующей единичной электрической мощности:

  • 30 кВт (выход тепловой энергии 85 кВт), шум 58 dB,  расход газа при номинальной нагрузке 12 м3
  • 65 кВт (выход тепловой энергии 160 кВт кВт)
  • 200 кВт
  • 600 кВт 
  • 800 кВт
  • 1000 кВт

ТЭО BHKW

Надо рассматривать в каждом конкретном случае, стоимость потреблённого установками топлива в сравнении со стоимостью покупки тепла и электроэнергии у монопольной государственной компании. Кроме того, стоимость подключения  в сравнении со стоимостью самих установок.

  • быстрый возврат инвестиций (срок окупаемости не превышает чётырёх лет) 
  • потребляя 0,3 куб. м газа возможность получать 1 кВт электроэнергии и ~ 2 кВт тепла в час
  • отсутствие платы за подключение к центральным сетям энергоснабжения, в прошлом году стоимость присоединения к электросети достигала в Московской области 48 907  рублей за один киловатт установленной электрической мощности (от 1 кВт до 35 кВт).Эта цифра вполне сопоставима со стоимостью строительства одного киловатта собственной, домашней высококачественной микротурбинной электростанции.
  • возможности приобретения в лизинг BHKW
  • минимум топливных потерь на локальной электростанции
  • возможность установки BHKW в старых котельных и на ЦТП
  • отсутствие необходимости строительства дорогостоящей ЛЭП, ТП, протяженной электросети
  • возможности быстрого увеличения электрической мощности, путем дополнительной установки энергетических модулей 

Стоимость киловатт-часа

Цена киловатт-часа отличается, прежде всего, от типа производящей электростанции. Различные финансовые институты используют дифференцированные методики при оценке производимой электроэнергии.

Стоимость одного киловатта ядерной энергии вывести непросто. Применяются отличающиеся методы оценки и подсчета.

Всемирная Ядерная Ассоциация сравнила стоимость киловатт-часа, который может быть произведен на новых электростанциях различных типов.

Если условная ставка по кредитам, выданным под строительство электростанции, составляет 10%, то киловатт-час электроэнергии стоит, произведенной на:
  • АЭС — 4.1 цента
  • на современной угольной электростанции — 4.8 цента
  • на газовой электростанции — 5.2 цента

Если кредитная ставка по финансированию строительства электростанций снизится до 5%, то получатся еще меньшие величины:

  • 2.7 цента для АЭС
  • 3.8 — для электростанции, работающей на угле
  • 4.4 цента — для газовой электростанции.

Европейская Комиссия пользуется другими данными:

  • 1 киловатт-час ядерной и гидроэнергии обходится в €0.05
  • угольной ТЭС — в €0.04 - 0.07
  • газовой электростанции — €0.11 - 0.22

По методике Европейской Комиссии оппонентами АЭС являются лишь ветряные энергоустановки, стоимость киловатт-часа которых составляет €0.015-€0.02.

Массачусетский Технологический Институт подсчитал, стоимость ядерной энергии составляет 6.6 цента за киловатт-час, а электричество, произведенное из природного газа, обходится в 3.7-5.5 центов.

По информации Университета Чикаго:

  • киловатт-час АЭС стоит 6.4 цента
  • киловатт-час, произведенный на газовой станции — 3.3-4.4 цента.

По методикам Института Ядерной Энергетики, в 2004 году в США стоимость киловатт-часа, произведенного:

  • на АЭС, составляла 1.67 центов
  • Киловатт-час угольной электростанции обходился в 1.91 цента
  • электростанции на HFO — в 5.40 центов
  • газовой электростанции — в 5.85 центов

Стоимость строительства киловатт-часа

Вопрос вопросов — стоимость и продолжительность строительства АЭС.

Организация Экономического Сотрудничества и Развития подсчитала, что стоимость строительства составляет:

  • атомной электростанции от $2.1 тыс. до $2.5 тыс. за киловатт мощности
  • угольной электростанции — $1.5 тыс.-1.7 тыс.
  • газовой электростанции — $1 тыс.-$1.4 тыс.
  • ветровой энергетической установки (ВЭУ) — $1 тыс.-$1.5 тыс.

Исследовательские центры, выступающие против строительства АЭС, считают, что эти данные не показывают реальной стоимости строительства АЭС.

Типичная АЭС мощностью 1GW обойдется, как минимум, в $2.2 млрд. Аналогичный вывод сделала Исследовательская Служба Конгресса США. По подсчетам службы, стоимость строительства атомной электростанции, после 1986 года, составляет от $2.5 до $6.7 млрд. Бюджетная часть систем безопасности АЭС составляет 1/3 стоимости проекта.

Срок строительства электростанций составляет:

  • АЭС — 5-6 лет
  • угольной электростанции — 3-4 года
  • газовой электростанции — 2 года

Институт Исследований Ядерной Политики подчеркивает, что тщательные анализы и расчеты долгосрочной стоимости ядерной энергетики никогда не проводились.

При обычных расчетах не учитываются:

  • стоимость обогащения урана
  • затраты на борьбу с последствиями возможных аварий
  • стоимость закрытия АЭС
  • расходы на транспортировку
  • хранение ядерных отходов

В США нет опыта закрытия ядерных установок. Стоимость затратного процесса возможно лишь предполагать. В 1996 году Министерство Энергетики предположило, что затраты могут разниться от $180 млн. до $650 млн.

Nexus:

На портале newtariffs.ru публикуются новые, сводные тарифы на электроэнергию, цены на природный газ, стоимость – уровень оплаты за тепловую энергию и водоснабжение, а так же прейскуранты на услуги ЖКХ.

Subscribe

  • Bella, ora et labora!

    “.. Народу надо дать правильную, фундаменталистскую веру. Чтобы те же подростки, преодолевая своё подонство, в светлое время суток всё свободное…

  • О мерзавцах

    За коммунизм из Парижа

  • Рецепт счастья

    Считать каждое мгновение своей жизни последним Это писалось довольно давно вечерами или ночами в лагере при Карнуте (Посониуме), на холодной…

  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 21 comments

  • Bella, ora et labora!

    “.. Народу надо дать правильную, фундаменталистскую веру. Чтобы те же подростки, преодолевая своё подонство, в светлое время суток всё свободное…

  • О мерзавцах

    За коммунизм из Парижа

  • Рецепт счастья

    Считать каждое мгновение своей жизни последним Это писалось довольно давно вечерами или ночами в лагере при Карнуте (Посониуме), на холодной…